1-(1/w)=(1/w^2)

Simple and best practice solution for 1-(1/w)=(1/w^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1-(1/w)=(1/w^2) equation:


D( w )

w^2 = 0

w = 0

w^2 = 0

w^2 = 0

1*w^2 = 0 // : 1

w^2 = 0

w = 0

w = 0

w = 0

w in (-oo:0) U (0:+oo)

1-(1/w) = 1/(w^2) // - 1/(w^2)

1-(1/w)-(1/(w^2)) = 0

1-w^-1-w^-2 = 0

t_1 = w^-1

1-1*t_1^2-1*t_1^1 = 0

1-t_1^2-t_1 = 0

DELTA = (-1)^2-(-1*1*4)

DELTA = 5

DELTA > 0

t_1 = (5^(1/2)+1)/(-1*2) or t_1 = (1-5^(1/2))/(-1*2)

t_1 = (5^(1/2)+1)/(-2) or t_1 = (1-5^(1/2))/(-2)

t_1 = (5^(1/2)+1)/(-2)

w^-1-((5^(1/2)+1)/(-2)) = 0

1*w^-1 = (5^(1/2)+1)/(-2) // : 1

w^-1 = (5^(1/2)+1)/(-2)

-1 < 0

1/(w^1) = (5^(1/2)+1)/(-2) // * w^1

1 = ((5^(1/2)+1)/(-2))*w^1 // : (5^(1/2)+1)/(-2)

-2*(5^(1/2)+1)^-1 = w^1

w = -2*(5^(1/2)+1)^-1

t_1 = (1-5^(1/2))/(-2)

w^-1-((1-5^(1/2))/(-2)) = 0

1*w^-1 = (1-5^(1/2))/(-2) // : 1

w^-1 = (1-5^(1/2))/(-2)

-1 < 0

1/(w^1) = (1-5^(1/2))/(-2) // * w^1

1 = ((1-5^(1/2))/(-2))*w^1 // : (1-5^(1/2))/(-2)

-2*(1-5^(1/2))^-1 = w^1

w = -2*(1-5^(1/2))^-1

w in { -2*(5^(1/2)+1)^-1, -2*(1-5^(1/2))^-1 }

See similar equations:

| x+12+2x=18 | | 3(k+7)-8(1+4k)=-45 | | 8+3b=4-3b | | (6m+4n+5)3= | | x=22(4/11) | | (x/5)=(4x/45)+3 | | 5.79+14.2v=16.43+14.9v | | 10/x=3 | | x(2x)=800 | | 8(2x-4)=x+103 | | -4y+19=y+4 | | (4/11)11/4x=22(4/11) | | 6+m-8=-7 | | x/7=79 | | -11.3r+17.43+12.3r=-0.4r-8.75 | | 7i(8-4i)= | | -32z^5+40z^4+12z^3=0 | | 4x^2+8x+4y^2+y=0 | | 2.7x-1.3=4.01x+3.8 | | 1/2m^2-9n^2-m^2-12+n | | -19-8p+4p=8-7p | | (1-9i)+(3+6i)= | | 3(5y-4)=6 | | 12y-5=10y-9 | | 4x-5=0.66x+5 | | -17-u=5+u | | 1/4(x+2)=1/6(7-x) | | 28x-4/8x-8=7/2 | | (1-9i)+(3+1i)= | | 15+5h=4h | | 1/4(x-2)=1/6(7-x) | | -7b+2=-8-9b |

Equations solver categories